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Molecular Biology & DNA Sequencing
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ATCTGATAAGTCCCAGGACTTCAGT

GCAAGGCAAACCCGAGCCCAGTTT

TCCAGTTCTAGAGTTTCACATGATC

GGAGTTAGTAAAAGTCCACATTGAG

Genome of an organism encodes the genetic information
in long sequence of 4 DNA nucleotides: ACGT

* Bacteria: ~3 million bp

* Humans: ~3 billion bp

Current DNA sequencing machines can sequence billions
of short (25-500bp) reads from random positions

* Per-base error rate estimated at |-2% (Simpson et al, 2009

* Requires smart systems to analyze the sequences

Modern Biology requires Computational Biology
* Individual reads have very little information

* World-wide sequencing capacity exceeds |2Pbp/year



Personal Genomics

How does your genome compare to Craig’s?
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Accelerating Short Read Mapping

Naive Read Mapping is hopelessly slow Suffix array
| billion 100bp reads x 3 billion positions of “GATTACA$”

Use an index to accelerate the search 7 $

» Skip to “S” to lookup Schatz in the phonebook a

* No word boundaries in the genome, so consider 6 $

every possible word/suffix 4| AC A$
1| ATTACAS

The Suffix Array (Manber & Myers, 1991) is one of
the most popular index structures 5 CA$

* Lexicographically sorted list of suffixes 0 GAT TACA$

* Fast binary search lookups: O(lg n) = 32 probes / read

* Relatively space efficient: O(n Ig n) =15GB / genome 3 TACA$

» Core index for Vmatch (http://www.vmatch.de/) and 2 TTACAS

many other applications



Burrows-Wheeler Transform
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Burrows Wheeler |mp!|C|tIy encodes
Matrix suffix array

* Suffix Array is tight, but much larger than genome
* BWT is a reversible permutation of the genome based on the suffix array
* Fast search and linear space requirements

* Core index for Bowtie (Langmead et al., 2009) and most recent short read
mapping applications

A block sorting lossless data compression algorithm.
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124



Index Construction

Naive Suffix Array Construction

* O(n?lgn) = O(n Ig n) comparisons x O(n) per comparison

Linear time Suffix Array Construction
* Oiriginal: Construct suffix tree -> traverse tree (VWeiner, 1973)
* Recent: Difference Cover | DC3 (Karkkainen et al., 2006)
* Intuition
* O(I) to order suffixes a & b if we know order of a+| & b+

* Recursively order 2/3G to order remaining /3 in O(l)
BWT trivially constructed from SA or from (slower) counting techniques

The leading methods require several hours for each mammalian genome

* Parallel methods not generally applied because of the requirement for
very fast interconnect (Kulla et al., 2007)



b Indexing Challenges

GENOME 10K

Sequencing underway for great numbers of very large genomes
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Basic Construction with MapReduce

Partition suffixes in lexicographically distinct bins, independently sort each bin
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Optimizations

Hadoop Optimizations
|. Shuffle “bare” indices to reduce shuffle volume

2. Use Sampling Partitioner to optimize load balance
 Inspired by TotalOrderPartitioner from SortBenchmark.org

3.  Run length encode bin boundaries to reduce size

« AAA...AAAG => A:10000|G:I
See paper for

gory details

Reducer Optimizations

|. Recursive Bucket Sort using first p characters (p=15)

2. Precompute single nucleotide repeat length

o Linear time sort of long simple repeats AAA.... AAAG

« Accelerate comparing simple repeats AAA...AAAGAAA...AAAC
3. Rank memoization (inspired by DC3 algorithm)

e Use relative rank of suffixes a,b to accelerate comparison of a-d,b-d



Experimental Evaluation

http://code.google.com/p/genome-indexing

« Implementation
e Java and JNI/C++

« Genome in shared memory

e lestbed: Amazon EC2

« High-Memory double extra large instances ($1 / hour).
4 HT cores @ 3.2 EC2 compute units

34.2G RAM, 850G Disk

Hadoop 0.20.2, VM Image: AMI-6AA34003

Max cluster size: 21 (I master and 20 drones)



Genomes evaluated

Name Genome Build  Length (nt)
HG19  Human (Homo sapiens) 19 3,095,677,412
MM9 Mouse (Mus musculus) 9 2,654,895,218
BT4 Cow (Bos taurus) 4 2,634,413,324
GG3 Chicken (Gallus gallus) 3 1,031,883,471
0s1 Rice (Oryza sativa) 1 370,792,118




End-to-End Performance

« Evaluate performance using g _ |
increasing numbers of cores " e [ e
« |5x speedup over Bowtie R 4 ;+ 22‘;
« 9x speedup over Vmatch Tél 8 [ &9 |
5
o Performance beyond 60 cores is E N—
limited by Hadoop overhead. < g S
e 120C cluster requires 398s to scan & X
human genome using HashPartitioner \x .
and ldentityReducer to write O—0 o
unsorted list of suffixes 25 B | |
30 60 120

cores




Reducer run time

o End-to-end runtime has

Qo
¥
substantial Hadoop overhead 7y
. \ BT4
\\ a GG3
) = g .\\ o O81
« Meaure runtime of the g < \\
reducer alone 2 NAL
8 o —~——
— Start: Index collection by reducer g & —1
— End: SA written to local disk \““\-_\
« Reducer runtime improved = . ¥

performance through 120C cores



Genome Scaling Performance

« Evaluate performance using a
fixed number of cores across
the 5 genomes

o End-to-end runtime is ~linear
with the size of the genome

Our performance optimizations
are very effective on real genomes

3Gbp Human genome takes ~9
minutes

Scaling to loblolly pine (24Gbp)
should only take ~lhr 10 min

End-to~End Runame (s)
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Hadoop for NGS Analysis

CloudBurst Crossbow
Highly Sensitive Short Read Searching for SNPs with
Mapping with MapReduce Cloud Computing
1 00x speedup mapping Identify 3M SNPs in an afternoon

on 96 cores @ Amazon

(Langmead, Schatz

(Schatz, 2009) Lin, Pop, Salzberg, 2009)

Quake Contrail
i
] !,v"" \ Quality-aware error Assembly of Large Genomes
7 correction of short reads Using Cloud Computing
1 h
}l “llm““ |||"||||II Correct 97.9% of errors Quickly assemble the human genome
: " . ' with 99.9% accuracy with hundreds of commodity cores
(Kelley, Schatz,
Salzberg, 2010) (Schatz et al. 201 1%)




Summary

Staying afloat in the data deluge means
computing in parallel

— Hadoop + Cloud computing is an attractive platform
for large scale sequence analysis and computation

* Our algorithm has substantially accelerated a
critical problem in computational biology

— Conceptually straightforward, but required careful
algorithm analysis and engineering

— Current performance limited by Hadoop

e Future Work

— Integration with Bowtie, BWA

— Phased algorithm for low memory clusters, read
indexing

— Continue development of MapReduce-enabled
algorithms for biology
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Thank You!

http://schatzlab.cshl.edu
@mike schatz



